Phys Rev B 2007, 75:245123.CrossRef 23. Purwanto W, Krakauer H, Zhang S: Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study. Phys Rev B 2009, 80:214116.CrossRef 24. Szabo A, Ostlund NS: Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory. London: Macmillan; 1982. 25. Fukutome H: Theory of resonating quantum fluctuations in a fermion Ilomastat system—resonating Hartree-Fock approximation—. Prog Theor Phys 1988, 80:417.CrossRef 26. Ikawa A, Yamamoto S, Fukutome H: Orbital optimization in the resonating Hartree-Fock approximation and its application to the one dimensional Hubbard model. J Phys Soc Jpn 1993, 62:1653.CrossRef 27. Igawa A: A method
of calculation of the matrix elements between the spin-projected nonorthogonal Slater determinants. Int J Quantum Chem 1995, 54:235.CrossRef 28. Tomita N, Ten-no S, Yanimura Y: Ab initio molecular orbital calculations by the resonating Hartree-Fock approach: superposition of non-orthogonal Slater determinants. Chem Phys Lett 1996, 263:687.CrossRef 29. Ten-no S: Superposition of nonorthogonal Slater determinants towards electron correlation problems. Theor Chem Acc 1997, 98:182.CrossRef 30. Okunishi T, Negishi Y, Muraguchi M, Takeda K: Resonating Hartree–Fock approach for electrons confined in two dimensional square quantum dots. Jpn J Appl Phys 2009, 48:125002.CrossRef 31. Imada M, Kashima T: Path-integral
renormalization Belnacasan group AZD6738 cell line method for numerical study of strongly correlated electron systems. J Phys Soc Jpn 2000, 69:2723.CrossRef 32. Kashima T, Imada M: Path-integral renormalization group method for numerical study on ground states of strongly correlated electronic systems. J Phys Soc Jpn 2001, 70:2287.CrossRef 33. Noda Y, Imada M: Quantum phase transitions to charge-ordered and Wigner-crystal states under the interplay of lattice commensurability and long-range Coulomb interactions. Phys Rev Lett Selleckchem Verteporfin 2002, 89:176803.CrossRef 34. Kojo M, Hirose K: Path-integral renormalization group treatments for many-electron systems with long-range repulsive interactions. Surf Interface Anal 2008, 40:1071.CrossRef 35. Kojo M, Hirose K: First-principles path-integral renormalization-group method for Coulombic many-body systems. Phys Rev A 2009, 80:042515.CrossRef 36. Goto H, Hirose K: Total-energy minimization of few-body electron systems in the real-space finite-difference scheme. J Phys: Condens Matter 2009, 21:064231.CrossRef 37. Goto H, Yamashiki T, Saito S, Hirose K: Direct minimization of energy functional for few-body electron systems. J Comput Theor Nanosci 2009, 6:2576.CrossRef 38. Goto H, Hirose K: Electron–electron correlations in square-well quantum dots: direct energy minimization approach. J Nanosci Nanotechnol 2011, 11:2997.CrossRef 39.