Three measurement approaches have been reported in TLS field measurements: single-scan, multi-scan and multi-single-scan. In the single-scan approach, the laser scanner is placed at the center of the plot and one full field-of-view (e.g., 360�� in horizontal direction and 310�� in vertical direction) scan is made. This approach has the simplest measurement setting and fastest measurement speed in the three approaches because only one scan is applied to a plot. The major problem of this approach, however, is the low detection rate. In the sample plot, 10%�C32% of all trees are not scanned from the plot center because of occlusion effects [17,18,20,25].Several scanning positions are necessary to measure all trees in a plot. In the multi-scan approach, several scans are made inside and outside of the plot.
Individual data sets are merged, typically using artificial targets, to form a single point cloud. This approach provides the best data set as the merged point cloud records trees from different directions; however, the approach is not always practical due to the cost of the manual or semi-automated processing required for the registration of several scans. In the multi-single-scan approach, several point clouds are processed individually and data sets are merged at the feature and decision levels. In this approach, the work load is clearly lower than with the multi-scan approach because reference targets are not required and the merging of several scans is fully automated. The detection rate is also clearly higher than that of the single-scan approach because the plot is scanned from several stations.
In practice, convenient measurement methods and rapid data acquisition are always preferred. New possibilities are currently being studied to improve the efficiency Drug_discovery of field data collection. Laser scanning has recently been put on moving platforms to build MLS systems and is being studied for forest mapping applications. The main advantage of applying MLS for forest measurements lies in its rapid data collection. Within an equal time frame, the area that can be investigated by utilizing MLS is significantly larger than the area investigated with TLS.The MLS system consists of one or several laser scanner(s) and multi-sensor positioning and orientation sensors. The first commercial MLS system for surveying applications was StreetMapper, which appeared in the market in 2006.
Similar sensor configurations are also used in robotics. MLS systems utilized in surveying and robotics have different emphases and perspectives. Surveying MLS emphasizes an absolute coordinate system and high measurement accuracy. In robotics, relative positions and accuracy are important. Because of the different applications, real-time processing is necessary for robotics but is only an advantage for surveying MLS.