Electrical contacts at electrodes 1 to 6 were fabricated by FIB p

Electrical contacts at GSK126 in vitro electrodes 1 to 6 were fabricated by FIB processing. We have previously established a technique to fabricate ohmic contact electrodes on the side surfaces of a bismuth nanowire for four-wire resistance measurement by ion beam sputtering and deposition of a thin film onto the surface of a nanowire in a quartz template using FIB [32]. An advanced technique was applied to fabricate electrodes for BYL719 in vivo Hall measurement in this study. All FIB processing and fabrication was performed using a Ga ion beam accelerated at 30 kV. The bismuth

nanowire was located at almost the center of the quartz template, so that the approximate position of the nanowire could be determined by coordinated positioning of the microscope with an accuracy of several micrometers. Firstly, two rectangular areas (2 × 10 μm2) on the quartz template were sputtered above the nanowire, using FIB as shown in Figure 2b, to determine the exact position of the bismuth nanowire with ca. 10-nm accuracy. Even if the quartz template covered the bismuth nanowire, https://www.selleckchem.com/products/NVP-AUY922.html the difference in the emission ratio of secondary electrons indicated where the bismuth nanowire was aligned [32, 33]. Secondly, a rectangular volume of 8 × 10 μm2 and a depth of ca. 5 μm were removed at one side position of the nanowire, as shown in the Figure 2c. The side surface of the bismuth nanowire was then exposed with a width

of 1 μm, and electrical contact to the bismuth nanowire was obtained using carbon film deposition by in situ reaction between the electron beam (EB) and phenanthrene (C14H10) gas, as shown in Figure 2d. The carbon electrode

on the nanowire was connected to the Ti/Cu thin films deposited on the quartz template (Figure 2e) by a low electrical resistance tungsten (W) film that was deposited by reaction between the Ga ion beam and hexacarbonyltungsten (W(CO)6). Figure 2h,i,j,k shows schematic cross sections for TCL the electrode fabrication process using FIB-SEM. The quartz template at the side area of the bismuth nanowire was already removed, as shown in Figure 2c. The remaining part of the quartz template was gradually removed with a very low current ion beam (10 nm wide) and at a very slow rate to carefully expose the bismuth nanowire and avoid damage to the nanowire. The surface was observed using SEM during removal of the quartz template; the SEM was located at tilt angle of 54° from the FIB. Figure 2l shows a 3-D schematic diagram of the process using dual-beam FIB-SEM. The Ga ion beam irradiation was stopped just after exposure of the bismuth nanowire, as shown in Figure 2i. Localized areas of the bismuth nanowire could be successfully exposed using this procedure. Carbon and tungsten electrodes were then deposited on the exposed surface of the bismuth nanowire, as shown in the Figure 2j.

Comments are closed.